Your cart is empty.

More Wallets Coming Soon! | Handmade Wallets | est. 2013

Product Image Minimalist Wallet | Carbon Fiber  (Brass Edition) - Bound Tight Wallets

Carbon Fiber Wallet | Brass Hardware


"The Black Sheep"

FullLine - Carbon Fiber Wallet With Brass Hardware

Made from Reclaimed Carbon fiber pieces used for NASA and Boeing parts.

This Wallet will have our Signature Brass Hardware and ages incredibly well with time to give this Wallet a clean-classic timeless look. The Black Sheep Wallet is a must have for your growing accessories collection.

Made from 3.1mm Carbon fiber and is known as the super hero of the materials world – it’s one of the strongest and most lightweight materials available on the market today.  Five times stronger than steel and one third its weight, carbon fiber composites are often used in aerospace and aviation, civil engineering, military, car racing and other competitive sports applications. Having something made from such elite materials with you everyday or when you go out to a wine tasting is sure to help generate great conversations.  

This article is part of the Energy.gov series highlighting the “Top Things You Didn’t Know About…

Carbon fiber -- sometimes known as graphite fiber -- is a strong, stiff, lightweight material that has the potential to replace steel and is popularly used in specialized, high-performance products like aircrafts, racecars and sporting equipment.

  1. Carbon fiber was first invented near Cleveland, Ohio, in 1958. It wasn’t until a new manufacturing process was developed at a British research center in 1963 that carbon fiber’s strength potential was realized.
  2. Current methods for manufacturing carbon fiber tend to be slow and energy intensive, making it costly for use in mass-produced applications. With a goal of reducing carbon fiber production costs by 50 percent, the Energy Department’s new Carbon Fiber Technology Facility at Oak Ridge National Laboratory is working with manufacturers and researchers to develop better and cheaper processes for producing carbon fibers. Lowering the cost of carbon fibers make it a viable solution for vehicles and a wide variety of clean energy applications.
  3. The 42,000-square foot facility features a 390-foot-long processing line that is capable of producing up to 25 tons of carbon fiber a year -- that is enough carbon fiber to cover the length of almost 138,889 football fields.
  4. The most common carbon fiber precursor -- the raw material used to make carbon fibers -- is polyacrylonitrile (or PAN), accounting for more than 90 percent of all carbon fiber production. Other precursor’s options include a common plastic and a wood byproduct.
  5. As part of conventional carbon fiber production, precursors go through several processes that include stretching, oxidation (to raise the melting temperature) and carbonization in high-temperature furnaces that vaporize about 50 percent of the material, making it nearly 100 percent carbon.
  6. Carbon fiber can be woven into a fabric that is suitable for use in defense applications or added to a resin and molded into preformed pieces, such as vehicle components or wind turbine blades.
  7. The next generation of carbon-fiber composites could reduce passenger car weight by 50 percent and improve fuel efficiency by about 35 percent without compromising performance or safety -- an advancement that would save more than $5,000 in fuel over the life of the car at today’s gasoline prices.
  8. In addition to its uses in manufacturing of cars and trucks, advances in carbon fiber will help American manufacturers lower the cost and improve the performance of wind turbine blades and towers, electronics, energy storage components and power transmission lines


This product is available.

Carbon Fiber "The Black Sheep" | Bound Tight Wallets Handmade in Small Batches